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ABSTRACT

Biofouling is the accumulation of organisms on surfaces immersed in water. It is of particular concern to the international
shipping industry because fouling increases the drag on vessels as they move through the water, resulting in higher fuel
costs, and presents a biosecurity risk by providing a pathway for marine non-indigenous species (NIS) to establish in new
areas. There is growing interest within jurisdictions to strengthen biofouling risk-management regulations, but it is expensive
to conduct in-water inspections and assess the collected data to determine the biofouling state of vessel hulls. Machine
learning is well suited to tackle the latter challenge, and here we apply so-called deep learning to automate the classification of
images from in-water inspections for the presence and severity of biofouling. We combined images collected from in-water
surveys conducted by the Australian Department of Agriculture, Water and the Environment, the New Zealand Ministry for
Primary Industries and the California State Lands Commission, and annotated them using the Amazon Mechanical Turk
(MTurk) crowdsourcing platform. We compared the annotations from three biofouling experts on a 120-sample subset of these
images, and found that for two tasks, identifying images containing fouling, and identifying images containing heavy fouling,
they showed 89% agreement (95% CI: 87–92%). It was found that the MTurk labelling approach achieved similar agreement
with experts, which we defined as performing at most 5% worse than experts (p=0.004–0.020). If used in future this approach
could offer significant cost savings over relying on expert consultants to annotate similar data. Our deep learning model trained
with the MTurk annotations also showed reasonable performance in comparison to expert agreement, although at a lower
significance level (p=0.071–0.093). We also demonstrate that significantly better performance than expert agreement can be
achieved if a classifier with high recall or precision was required.

Introduction
Global trade relies on the international shipping industry, which has been implicated in the spread of many marine non-
indigenous species (NIS) around the world1, 2. Modern vessels have two primary pathways for translocating NIS, namely (i) as
stowaways in ballast water, or (ii) attached to the vessel surface as biofouling3; examples of each follow. Ballast water was the
likely vector for zebra mussels to spread from Europe to the great lakes in North America4, where they have led to increases in
toxic blue-green algae5 and cost industry more than $200 million per year in maintaining water intake structures6. Biofouling is
one of the most significant pathways for the spread of non-indigenous seaweeds7–9, which can outcompete native species10,
make native kelp forests less resilient11 and adversely impact fishing and tourism operations12, 13.

Although vessels are incentivised to manage their biofouling to reduce hydrodynamic drag and fuel costs3, 14, it is a
challenging undertaking and can occur even on hulls that employ current best practice15, 16. The primary method of biofouling
management is the regular application of anti-fouling coatings. These contain biocides, such as copper, or create a surface that
releases organisms or dissuades attachment to slow down the process of biofouling accumulation17. A vessel’s operating profile
contributes to fouling risk, with extended periods of inactivity being associated with higher biofouling pressure18. Niche areas,
such as sea chests, propellers, and other complex surface structures are at high risk of becoming fouled as they can offer a
sheltered environment for fouling organisms to establish. They are also a lower priority for management as they contribute less
to hydrodynamic drag compared to the flat surfaces of the hull19.

There is growing interest in closer management of the biofouling pathway by biosecurity regulators20, 21. New Zealand has
implemented a clean hull standard that sets requirements for vessels to manage biofouling and proposed a clean hull threshold
to determine the potential biosecurity risk of a vessel22. For vessels staying longer than three weeks or visiting areas other than
those designated as places of first arrival, any macrofouling other than goose barnacles is considered to be a biosecurity risk,
while for short stay vessels there are macrofouling coverage thresholds16, 23. In implementing this policy, they have stressed the
vessel management requirements rather than the thresholds, as even with best management practices ships can become fouled16.
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Australia has also proposed requirements for vessels to implement biofouling management practices or provide evidence that
their fouling is appropriately controlled21.

In-water inspections are the best way to verify biofouling standards are being met and to collect the necessary data to
measure the effectiveness of biofouling management practices. However, in-water inspections are expensive, require specialist
dive teams to operate in an environment with a number of health and safety risks, and while inspections are being conducted
vessels are restricted in the activities they can undertake24. A biofouling expert also either needs to be present during the
inspection, or review the images and footage gathered afterwards, which can be a costly and time-consuming process. An
alternative is to employ an underwater drone or remotely operated vehicle (ROV), which would enhance data collection
opportunities but also potentially increase the burden of the expert interpreting the data.

In this paper we explore the potential for deep learning, a type of machine learning which models phenomena using
deep neural networks, to automate or assist the analysis of biofouling inspection data. In the last decade deep learning has
revolutionised computer vision; in fact, many regard AlexNet, the 2012 winner of the ImageNet visual recognition challenge25,
as the watershed moment for deep learning26. AlexNet was among the first deep convolutional neural networks (CNN)27, an
architecture that is particularly suited to computer vision tasks. Our present approach is motivated by the plethora of successful
applications of deep CNNs to complex image recognition tasks, from identification of wild animals in camera trap images28, 29

to identification of coral species30.
A prominent example of automating biofouling image analysis is CoralNet, a machine learning method initially designed

for annotating benthic surveys of coral reefs using a random annotation point approach31. CoralNet has been applied to assess
the level of cover of different species and higher level taxonomic groups present in fouling communities on oil platforms in the
UK continental shelf, using images taken by ROVs32. Our aim in this current study was to develop a method that could be used
to assess biosecurity risk, and in this context CoralNet was less suitable. Most of the images of vessel hulls that were available
for developing our method had limited biofouling coverage. Unlike coral reefs and oil platforms, vessels are not stationary and
actively manage their biofouling. This makes sampling error an important consideration for annotation point approaches, like
CoralNet, and as CNNs consider the whole image they do not have this weakness.

Determining the potential biosecurity risk of a vessel also does not require the identification of particular species. It has
been found that there is a positive relationship between the degree of biofouling present on a vessel and the number of NIS
present23. This has led many jurisdictions, such as New Zealand, to require biofouling to be managed holistically rather than
targeting specific species16. Species-based approaches also scale poorly in the marine context, as there is a large number of
species that can be observed in these communities, the taxonomy is highly complex, and previously unobserved species are
common20, 21. Instead, we aimed to identify the presence and severity of biofouling which is a much simpler problem. This
also makes our model more transferable to locations outside of the support of the current data and it may be of use to other
jurisdictions, although performance will likely be improved by the introduction of local examples to the training data.

Methods

Dataset
We assembled a dataset of 10,263 images collected from in-water surveys of around 300 commercial and recreational vessels.
This dataset comprised images provided by three jurisdictions, namely: the Australian Department of Agriculture, Water and
the Environment (DAWE), the New Zealand Ministry for Primary Industries (MPI), and the California State Lands Commission
(CSLC). Examples from the CSLC dataset are available in the literature33, and the MPI data set has previously been used to
inform vessel biofouling management in New Zealand16, 23, 34.

Each image was accompanied by a label according to the six-class Level of Fouling (LoF) scheme35. However, due to
inconsistencies in the LoF labelling across the three jurisdictions, it was necessary to relabel the dataset in a systematic way.
We first devised a Simplified Level of Fouling (SLoF) scale (Table 1). This scale was based on the LoF scheme, but collapsed
the six levels into pairs to create a three-class scale. This was the simplest possible set of annotations that supported our goal of
identifying images with fouling present and highlighting images with severe fouling.

Table 1. Simplified Level of Fouling (SLoF) scale

Rank Description

0 No fouling organisms, but biofilm or slime may be present.
1 Fouling organisms (e.g. barnacles, mussels, seaweed or tubeworms) are visible but patchy

(1-15% of surface covered).
2 A large number of fouling organisms are present (16-100% of surface covered).
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(a) SLoF 0 (b) SLoF 1 (c) SLoF 2

Figure 1. Example images of different SLoF levels.

We then separately asked experts and workers from the Amazon Mechanical Turk platform to annotate images according to
our SLoF scheme. For the former, we engaged three biofouling experts from Ramboll New Zealand who hold qualifications
in marine biology. Due to time and budget constraints, we only asked the experts to grade a set of 120 images from the
DAWE dataset, constructed by stratified random sampling to ensure balance across LoF. We will call this set of 120 images the
expert-labelled dataset.

Next, the convenience of the Amazon Mechanical Turk platform enabled us to annotate each image in our 10,263 dataset
according to the new SLoF scheme. The examples and user interface supplied to workers are given in the supporting information.
Nine workers graded each image, and the results were aggregated by taking the median value. This labelling scheme produced
an imbalanced dataset, with around 70% of the images being labelled SLoF 0 compared to 20% SLoF 1 and 10% SLoF 2 (Table
2). Example images and their SLoF labels are provided in Figure 1.

Table 2. Breakdown of the number of images by SLoF in the five-fold cross validation and test datasets.

Crossvalidation dataset Test dataset Total
Images with SLoF 0 6418 410 6828
Images with SLoF 1 2086 224 2310
Images with SLoF 2 918 207 1125

Total 9422 841 10263

Finally, we divided the overall dataset of 10,263 images into a training set and a test set, as is commonly done in machine
learning to enable proper evaluation. The test set consists of the 120 expert-labelled images plus 721 other images from 14
vessels selected with varying degrees of fouling as determined by SLoF. The test set was constructed to challenge the machine
learning model with different styles of vessel niches and fouling communities. Hence, we had a total of 841 images in the test
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set; the remaining data were used to both train the deep learning model and perform cross-validation (5-fold) for hyperparameter
tuning.

Machine Learning
A machine learning algorithm typically learns by training on a set of examples. We present to the machine learning algorithm a
set of images with the accompanying SLoF labels (i.e. 0, 1, 2). We wish the algorithm to accurately label images outside of this
training set, i.e., to generalize to never-before-seen images.

The setup so far makes the problem a classic supervised learning task. However unlike most image classification problems,
our classes are ordinal. For example, mistaking an image of SLoF 2 as 0 is a larger error compared to mistaking an image of
SLoF 1 as 0. This is an analogous challenge to the recent APTOS 2019 Blindness Detection Kaggle competition36, which asked
participants to label the severity of a disease in images on an integer scale. Many of the best performing Kaggle entries used
regression losses rather than classification losses, and we follow the same approach here as this allows the relative magnitude of
errors to be captured.

To measure the model performance, we consider our three-class problem as two separate binary classification tasks: 1)
identify fouled images (SLoF = 0 versus SLoF > 0) and 2) identify heavily fouled images (SLoF = 2 versus SLoF < 2). This
allows us to measure the effectiveness of our model as a classifier without choosing arbitrary class thresholds. Instead of the
more commonly used receiver operating characteristic (ROC) curve, we use the average precision metric because it provides a
better indication of classifier performance in the case that classes are imbalanced37, 38. We apply the average precision metric to
each of the two binary classification tasks, and report finally their average as an overall indicator of performance.

Given that we are working with image data, the natural deep learning architecture to use is the convolutional neural network
(CNN). A CNN comprises an input layer, which in our case is an RGB image, and an output layer, which is a raw number
that relates to the SLoF class of the image. Between these are multiple hidden layers, which are connected in a sequence and
make up the architecture of network. Each layer performs an operation on the previous layer, such as convolutions, pooling
operations, or matrix-matrix multiplications, and the nature of these operations are determined by trainable weights26. The
creators of AlexNet were the first to discover that stacking a large number of these layers greatly improved performance the
performance of CNNs on image-recognition tasks27.

Training a CNN consists of many components including the selection of a network architecture, a method of optimising the
weights of the network (optimiser), a differentiable function that describes network performance with different configurations
of weights (loss function), optimiser parameters, an image augmentation pipeline and a learning rate schedule that modifies
the size of each weight update over each epoch (i.e., iteration through the training data). Together these components affect
the quality of the trained neural network. Often the term hyperparameter is used to refer to parameters of the optimiser, the
learning scheduler, etc. The number of possible combination of these design components is incredibly large, and the available
search space for determining the best combination is limited by the amount of computing power available.

We trained and tested our deep learning models with pytorch39, an open-source deep-learning library developed by
Facebook. We begin the model building process by conducting a learning rate test40, using stochastic gradient descent (SGD)
as the optimiser and a default set of optimiser parameters picked from the APTOS challenge. The result of this test was used to
inform a quasi-random search for the best optimiser parameters41, drawing parameters from a Sobol sequence42 to provide
more even coverage of the search space compared to random sampling. This was done by training the model for a small number
of epochs, and the best sets of optimiser parameters were chosen for further exploration in addition to the default set.

We then tested performance for different combinations of the training components. We considered mean squared error
and smooth-L1 loss, which we weighted by class frequency to remove the bias introduced by the imbalance of the dataset43.
In addition to the standard optimisation algorithm SGD, other optimisers such as Adaptive Moment Estimation (Adam)44,
Rectified Adam (RAdam)45 and Adam with a corrected weight decay algorithm (AdamW)46 were tested. Several learning rate
schedules were examined including a multi-step learning rate decay schedule, one-cycle47 and cosine annealing48. In CNNs,
image augmentation pipelines are important for preventing overfitting to the training data, and two different approaches with
varying complexity were tried from the APTOS competition. These applied operations to our training data images that did not
change their class such as rotations, random cropping, and adjusting the colour and contrast.

We considered off-the-shelf network architectures, starting with the small resnet18 residual network which was used
to test every possible combination of the training components above. The residual network was introduced to address the
vanishing gradient problem in networks with large numbers of layers by allowing inputs to skip layers, and obtained first place
in the 2015 ImageNet classification challenge49. Once the best training components were identified we trained larger and
more modern network architectures on larger images, allowing us to determine if increasing image size from 224×224 to
448×448 pixels improved performance. These architectures included the "ResNeXT" squeeze and excitation networks which
built upon the residual learning idea and introduced a squeeze and excitation block that incorporates relationships between
image colour channels50, 51. We also tested the inception architecture, which attempts to identify features at different scales in
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the image by applying convolution layers with several different sized kernels simultaneously52. We also considered efficient
nets, which incorporate some of these previous ideas into an architecture that is designed to scale optimally and efficiently when
the number of layers is increased53. A summary of the network architectures used in this paper and the Python packages used
to implement them are provided in Table 3.

Table 3. Summary of neural network architectures used in model building.

Network Family Network Architecture Source package Reference Layers Trainable weights (106)

Residual learning resnet18 torchvision 49 18 11
Squeeze and excitation se_resnext50_32x4d pretrainedmodels 50, 51 50 25
Squeeze and excitation se_resnext101_32x4d pretrainedmodels 50, 51 101 47
Inception inceptionv4 pretrainedmodels 52 150 41
Inception inceptionresnetv2 pretrainedmodels 52 245 54
Efficient-net efficientnet-b3 efficientnet-pytorch 53 27 11
Efficient-net efficientnet-b4 efficientnet-pytorch 53 33 17
Efficient-net efficientnet-b5 efficientnet-pytorch 53 39 28

We used the pretrained ImageNet weights to initialise all our networks. These weights are obtained by pre-training the
network on the ImageNet database, which contains millions of images with a thousand different categories54, and were available
for download through the architecture packages. This is a common practice known as transfer learning which reduces the
number of epochs required to reach a performance plateau and improves results on small datasets28. All network weights were
trained, except for the batch-normalisation layers, as these are best trained on large datasets like the ImageNet database.

The final step was creating a network ensemble. This is a technique where the class of an image is predicted by multiple
networks, and their outputs are combined to obtain better performance28. We took the simplest approach, which is to average
the raw network output. We identified the best performing ensemble by testing the performance of every combination of
network trained on a particular image size. This gave us 510 possible ensembles to test for each image resolution. The full
details of the model fitting process are provided in the supporting documentation.

Thresholding to create a classifier
The raw output of our model is a single number which needs to be thresholded to map back to the SLoF classes. The
precision-recall curve created by combining validation crossfolds is used to guide this mapping process (Figure 2). In particular,
the curve highlights the trade-off between precision and recall when choosing a threshold. A high precision classifier will only
capture some of the positive results, while a high recall classifier will capture most of the positive results along with many false
positives. For illustrative purposes we have selected three classifiers to explore, namely a high-precision classifier chosen with
a 25% recall threshold, a high-recall classifier chosen with a 90% recall threshold and a balanced classifier with a 70% recall
threshold.

Comparison to experts
Perfect agreement within our labelling scheme is unlikely among biofouling experts due to its subjectivity, and the frequency at
which experts agree with each other is a useful benchmark to evaluate the performance of our alternative labelling methods.
Our 120-image expert-labelled dataset was graded by three experts, yielding a total of 720 expert-expert label pairs. These were
obtained by pairing the labels of one expert to annotations provided by the other two, and repeating the process for each expert.
We also paired the MTurk and model labels with each expert, providing 360 label pairs to compare to the expert-expert label
pair performance.

We assessed the significance of differences in precision and recall with a two-sided Fisher’s exact test55 with the
fisher.test function in R56, using the null hypothesis that the precision or recall between experts is no different to
the precision or recall with our alternate labels and using experts as the ground truth. We also used the two-one-sided t-tests
(TOST) approach to test for non-inferiority57 using the TOSTER R package58. The null hypothesis in this method was that the
agreement observed between experts would be at least 5% better compared to the agreement observed between our alternate
labels and experts. A separate non-inferiority test was necessary as the lack of significant differences does not mean we can
conclude that two distributions are similar59. We chose a p-value of 0.05 to signify statistical significance.

Results
Model thresholding and performance
Our best performing model based on five fold cross validation was an ensemble consisting of the resnet18, se_resnext50_32x4d,
inceptionv4, inceptionresnetv2, efficientnet-b3 and efficientnet-b5 CNN architectures (see Table
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Figure 2. Precision-recall curve for model using validation data from each crossfold.

3) with an input image size of 448×448 pixels, trained using a SGD optimiser, the default set of optimiser hyperparameters,
smooth-L1 loss, a cosine annealing learning rate schedule and the more complex set of image augmentations. This gave a
mean average precision of 0.849 (standard deviation of 0.018), which significantly improved upon the results from our initial
random search of 0.799 (standard deviation of 0.028). The full results of the model fitting process is provided in the supporting
documentation. The results for each binary classification problem with this model on our validation data and test dataset are
shown in Table 4. The classifiers show better results on the testing dataset, which is promising for the generalisability of our
model.

Table 4. Precision and recall of classifier using model with chosen recall thresholds on the validation and testing dataset.

Data SLoF Threshold Precision Recall
Validation >=1 0.426 0.646 0.900
Test >=1 0.426 0.796 0.961
Validation >=1 0.782 0.817 0.700
Test >=1 0.782 0.914 0.810
Validation >=2 1.218 0.581 0.900
Test >=2 1.218 0.742 0.918
Validation >=2 1.577 0.780 0.700
Test >=2 1.577 0.939 0.744
Validation >=1 1.623 0.986 0.250
Test >=1 1.623 1.000 0.350
Validation >=2 1.918 0.943 0.251
Test >=2 1.918 1.000 0.357

Inter-rater reliability
We found that experts agree most often on images showing clean or heavily fouled hulls, while images that only contained
some fouling was were more likely to obtain inconsistent grades (Figure 3a). Overall, experts showed 89% agreement for both
tasks (95% CI: 87–92%). As we have considered every combination of experts, the recall and precision calculated for each task
was the same. Experts were found to achieve 91% precision and recall for identifying images containing fouling (95% CI:
88–94%) and 87% for images containing heavy fouling (95% CI: 82–90%) (Table 5).
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Figure 3. Confusion matrices for expert versus MTurk and model labels using the SLoF score on the 120 image test set.

When the rate of agreement between the MTurk labels and experts was compared to agreement between experts we found
that the difference was not statistically significant when comparing recall (p = 0.28–0.44) or precision (p = 0.32–0.48) for
both tasks. However, the non-inferiority test showed that the agreement of the MTurk labels to experts was similar to within a
margin of at most 5% worse (p=0.004–0.02) This similarity could also be observed from the confusion matrix between expert
and MTurk labelling (Figure 3b).

Expert agreement is a useful benchmark for our computer vision model, and depending on the thresholds chosen to create a
classifier, different outcomes were found (Table 5). Choosing a 70% recall threshold for both tasks resulted in a classifier that
was close to having similar agreement with experts to within a margin of at most 5% worse (p = 0.071–0.093). While these
p-values were slightly above our threshold for statistical significance, it was also noted that the difference in precision (p =
0.33–0.65) or recall (p = 0.25–0.88) was also not statistically significant. The results for this classifier are shown in Figure 3c as
a confusion matrix. Using a 90% recall threshold instead could produce significantly higher recall or close to with respect to
experts (p = 0.019–0.058) at the cost of significantly lower precision (p=0.002–0.004). Conversely, using a much lower recall
threshold of 25% results in significantly higher precision (p=0.004–0.018), with a corresponding decrease in recall (p< 0.001).

Discussion
In this study we applied deep learning methods to identify the presence and severity of biofouling on ship hulls using images
annotated on the Amazon Mechanical Turk crowdsourcing platform, and compared our performance to experts. Our MTurk
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Table 5. Precision and recall for expert-expert, MTurk-expert and classifier-expert label pairs. Numbers in brackets are the
95% confidence intervals. The TOST column are non-inferiority testing p-values using the two-one-sided t-tests approach, with
the null hypothesis being that the agreement observed between experts would be at least 5% better compared to the agreement
observed for the method-expert label pairs. The p-value columns are given by a two-sided exact Fisher test, with the null
hypothesis being that the method-expert label pairs do not differ in their precision or recall compared to the expert-expert label
pairs.

Labels Classification Label pairs Agreement TOST Recall p-value Precision p-value
Expert SLoF > 0 720 0.89 (0.87-0.92) 0.91 (0.88-0.94) 0.91 (0.88-0.94)
Mturk SLoF > 0 360 0.90 (0.86-0.93) 0.004 0.94 (0.90-0.97) 0.279 0.90 (0.85-0.93) 0.484
90% Recall Classifier SLoF > 0 360 0.86 (0.81-0.89) 0.305 0.96 (0.92-0.98) 0.058 0.84 (0.78-0.88) 0.002
70% Recall Classifier SLoF > 0 360 0.88 (0.84-0.91) 0.071 0.91 (0.86-0.94) 0.884 0.89 (0.84-0.93) 0.328
25% Recall Classifier SLoF > 0 360 0.71 (0.66-0.75) 1.000 0.54 (0.47-0.60) < 0.001 0.98 (0.93-0.99) 0.018
Expert SLoF = 2 720 0.89 (0.87-0.92) 0.87 (0.82-0.90) 0.87 (0.82-0.90)
Mturk SLoF = 2 360 0.89 (0.85-0.92) 0.020 0.89 (0.83-0.94) 0.440 0.83 (0.76-0.89) 0.323
90% Recall Classifier SLoF = 2 360 0.86 (0.82-0.89) 0.261 0.94 (0.89-0.98) 0.019 0.76 (0.69-0.82) 0.004
70% Recall Classifier SLoF = 2 360 0.87 (0.83-0.90) 0.093 0.82 (0.75-0.88) 0.250 0.85 (0.78-0.90) 0.654
25% Recall Classifier SLoF = 2 360 0.78 (0.73-0.82) 0.997 0.44 (0.35-0.52) < 0.001 0.98 (0.91-1.00) 0.004

labels showed similar agreement to experts, and this result is highly promising as it suggests images can be effectively graded
for the presence and severity of biofouling by non-experts by aggregating their annotations, offering the potential for substantial
time and cost-savings. This labelling was also sufficient for training CNNs that were found to have close to expert agreement,
although fine-tuning our model on expert-annotated data may offer further improvements. We have also demonstrated that if
high precision or recall is desired for the application of the model, then classifiers can be created that offer better performance
than experts with regard to this property. This allows the behaviour of the classifiers to be tuned for a particular application. For
example, when screening vessels for biosecurity risk it may be desirable to have a classifier with higher recall so few images
with severe fouling are missed. Conversely, if an activity were being undertaken where intervention capacity was limited then a
classifier with higher precision would be more appropriate.

The effectiveness of management activities for vessel biofouling in reducing biosecurity risk is currently a key knowledge
gap for regulators, which makes it difficult to determine which combination of activities will provide confidence that a vessel is
low risk. This model could be applied to provide a cheaper and more reliable way to identify the most effective management
strategies, if combined with standardised vessel sampling protocols24, 60, clear definitions of vessel biosecurity risk, such as the
clean hull standard for New Zealand16, collection of management data, and ongoing in-water vessel inspections. This will also
support more consistent assessment of effective management strategies between different organisations, which is a limitation of
expert assessments. Building this evidence base would also provide benefits to industry, as it would be a basis from which to
work towards regulatory alignment between different jurisdictions.

In-water cleaning and hull grooming are increasingly important biofouling management activities, as regular cleaning
can limit biofouling accumulation and provide options where the anti-fouling coatings of vessels are no longer effective or
have failed61, 62. However, it also presents a biosecurity risk because cleaning can lead to the release of viable propagules and
organisms can detach and still be viable63–65. One way this risk can be managed is by considering the biofouling state of the
vessel before setting conditions on in-water cleaning or grooming activities. For example, New Zealand recommends that
in-water cleaning of macrofouling with an international origin must capture biological waste and dispose of it on land or be
rendered non-viable, but this would not be necessary if only a slime layer were present66. Automatic detection of biofouling
using the state-of-the-art deep learning tools developed in this paper could be a cost-effective and reliable way for regulators
and industry to process the outcomes of biofouling inspections for this purpose.

So far we have only tested our model on static images. Since videos are constructed using a stream of images, our model
should be readily adaptable to videos as well. However, further work is needed to address issues such as identifying the frames
in which the camera is directed towards a vessel hull as opposed to open water or where image quality is poor, which is a
common issue when analysing stills obtained from ROV footage32. The video format would also offer the opportunity to
incorporate information from future and previous frames to improve and smooth fouling estimates, and ideas from current
action recognition methods could potentially be applied67.

Our SLoF labelling scheme also only relates to the percentage cover of macrofouling present within an image, which could
be more rigorously used to determine the absolute biosecurity risk of a vessel if the area of hull captured within the image
could be estimated. Given that in-water inspection methods are expected to vary greatly between jurisdictions, being able to do
this without the presence of scale bars would be a major advantage. One possibility would be training a deep neural network on
images of vessel hulls taken using multiple cameras, and building a model that will estimate depth given a single image68.
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