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Direction-Projection-Permutation for
High-Dimensional Hypothesis Tests

Susan WEI, Chihoon LEE, Lindsay WICHERS, and J. S. MARRON

High-dimensional low sample size (HDLSS) data are becoming increasingly com-
mon in statistical applications. When the data can be partitioned into two classes, a basic
task is to construct a classifier that can assign objects to the correct class. Binary linear
classifiers have been shown to be especially useful in HDLSS settings and preferable
to more complicated classifiers because of their ease of interpretability. We propose
a computational tool called direction-projection-permutation (DiProPerm), which rig-
orously assesses whether a binary linear classifier is detecting statistically significant
differences between two high-dimensional distributions. The basic idea behind DiProP-
erm involves working directly with the one-dimensional projections of the data induced
by binary linear classifier. Theoretical properties of DiProPerm are studied under the
HDLSS asymptotic regime whereby dimension diverges to infinity while sample size
remains fixed. We show that certain variations of DiProPerm are consistent and that con-
sistency is a nontrivial property of tests in the HDLSS asymptotic regime. The practical
utility of DiProPerm is demonstrated on HDLSS gene expression microarray datasets.
Finally, an empirical power study is conducted comparing DiProPerm to several alter-
native two-sample HDLSS tests to understand the advantages and disadvantages of each
method.

Key Words: Distance weighted discrimination; High-dimensional hypothesis test;
High-dimensional low sample size; Linear binary classification; Permutation test; Two-
sample problem.

1. INTRODUCTION

High-dimensional low sample size (HDLSS) datasets are becoming increasingly promi-
nent in statistical applications. When the data can be partitioned into two classes, a basic
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task is to use the class labels to build a function that assigns data to the correct class, that
is, classification. A popular classifier is the binary linear classifier that bases its decision
on a linear combination of the features. Binary linear classifiers are preferable to more
complicated classifiers such as random forests or neural networks in HDLSS settings for
their ease of interpretability. If the variables are of the same scale, we can interpret the
features with larger coefficients in the linear combination as being more “important,” that
is, they play a more prominent role in driving the separation between the two classes.

Linear classifiers are also known to find spurious linear combinations in HDLSS set-
tings. For instance, a binary linear classifier could find, for two identical high-dimensional
distributions, a linear combination of features such that the two classes appear to be very
different. This is related to overfitting; when dimension exceeds sample size, a binary linear
classifier can achieve 100% classification accuracy on the training data.

We propose a computational tool called direction-projection-permutation (DiProPerm)
to rigorously assess whether a binary linear classifier is detecting a statistically significant
difference between two high-dimensional distributions. This is accomplished by working
directly with the one-dimensional projections of the data on the binary linear classifier, that
is, the value of the linear combination. DiProPerm uses the projections to assess whether the
original high-dimensional distributions are significantly different. The projection technique
in DiProPerm has several advantages: (i) the outcome of the test can be related directly
back to the binary linear classifier involved and (ii) DiProPerm borrows the strength of
binary linear classifier in HDLSS settings to create a powerful hypothesis test.

We now provide a real world example, to be revisited in detail in Section 5, to further
motivate the methodology. Two HDLSS breast cancer microarray datasets are considered.
In each dataset, we consider the two-sample problem of testing for equal distribution. The
panels in Figure 1 show, for each dataset, the one-dimensional projection of the data onto a
binary linear classifier called distance weighted discrimination (further details are given in
Section 2.1). Note that the one-dimensional projections in the UNCGEO dataset are better
separated than in the UNCUP dataset. The DiProPerm test results, shown in Section 5,
reveal the surprising conclusion that the UNCGEO classes are not actually significantly
different while the UNCUP classes are very significantly different. The lesson here is that
differences in lower dimensional visualizations do not always translate back to the original,
high-dimensional, data distributions.

1.1 THE SETUP

Let X1, . . . , Xm and Y1, . . . , Yn be independent random samples of Rd -valued random
vectors, d ≥ 1 with multivariate distributions F1 and F2, respectively. We are interested in
testing the null hypothesis of equal distributions

H0 : F1 = F2 versus H1 : F1 �= F2. (1)

1.2 RELATED WORK

There are several two-sample multivariate tests for equal distributions in the literature
based on inter-point statistics. One such family of tests is based on nearest neighbor (NN)
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Figure 1. One-dimensional DWD projection plots for the UNCGEO dataset and the UNCUP dataset. The
separation in the UNCGEO dataset is more visually pronounced than in the UNCUP dataset. Colors represent
class labels.

coincidences (Bickel and Breiman 1983; Schilling 1986; Henze 1988). The test statistic is
a function of the number of neighbors around a data point that belong to the same sample.
The null distribution of the test statistic can either be determined using parametric theory
or implemented nonparametrically via a permutation approach.

Another family of two-sample multivariate tests for equal distributions under HDLSS
settings is based on pairwise distances (see Friedman and Rafsky 1979; Hall and Tajvidi
2002; Baringhaus and Franz 2004; Szekely and Rizzo 2004; Baringhaus and Franz 2010).
The energy test statistic proposed in Szekely and Rizzo (2004), for example, is based on the
Euclidean distance between pairs of sample elements. The significance of the energy test
statistic is assessed using a permutation test. We will compare DiProPerm to the energy test
later in Section 4. We choose to focus on the energy test rather than the NN tests because
the latter critically depends on the choice of number of neighbors while the energy test has
no tuning parameters.

A two-sample test for equal distributions that is quite similar to DiProPerm was recently
proposed by Ghosh and Biswas (2013). We will describe in Section 4 details of the method
and compare DiProPerm to it. We will demonstrate that DiProPerm has certain advantages
over the Ghosh and Biswas method in part because the former makes use of all of the data
while the latter holds out a subset during training.

It should also be noted that there are several two-sample tests for equal means in the
literature. Many of these tests are based on extending the classic Hotelling T 2 test (Bai and
Saranadasa 1996; Srivastava and Du 2008; Chen and Qin 2010). Essentially, they operate
by replacing the covariance matrix in the Hotelling T 2 statistic by a diagonalized version.
The critical values of the test statistic is often set using the limiting null distribution of
the statistic letting both sample size and dimension go to infinity. The dimension d in Bai
and Saranadasa (1996) is allowed to grow as long as d/n → y > 0. In Srivastava and Du
(2008), we have n = O(pψ ) where 1

2 < ψ ≤ 1. In Chen and Qin (2010), the dimension
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is also allowed to grow without any explicitly restriction between d and n directly. It is
debatable whether this is a practical viewpoint since in HDLSS data, the sample size is
very limited and additional data collection is often cost prohibitive.

Lopes, Jacob, and Wainwright (2011) claimed that the limited use of the covariance
structure will cause the above procedures to suffer in power. They propose the random
projection (RP) method, a two-sample test of equal means for Gaussian data. The procedure
projects the high-dimensional data onto a random subspace of low enough dimension so
that the traditional Hotelling T 2 statistic may be used. The resulting test statistic has a
limiting F distribution in the classical asymptotic regime. The RP test critically assumes
normality and equal covariances. We will compare DiProPerm to the RP test later in Section
4. Of particular interest is to see how the random projection scheme in the RP procedure
compares with the carefully chosen projection direction in DiProPerm.

Finally, we will compare our method to the extreme value test in Cai, Liu, and Xia
(2014), which addresses testing equality of means. Unlike the methods above, the extreme
value test is not based on projections. The test statistic is based on a linear transformation
of the data by the precision matrix, the inverse of the covariance matrix, which incorporates
the correlations between the variables. The test is particularly powerful against sparse
alternatives.

1.3 OVERVIEW

The outline of the article is as follows. In Section 2, the three-step DiProPerm procedure
is presented in detail. The theoretical properties of DiProPerm under the HDLSS asymptotic
regime whereby the dimension goes to infinity and sample size remains fixed are studied
in Section 3. In particular, it is revealed that certain variations of DiProPerm are consistent
and more importantly, consistency is a nontrivial property in HDLSS asymptotics, that is,
there exists reasonable hypothesis tests whose power does not converge to 1 as dimension
goes to infinity. In Section 4, we perform a Monte Carlo power study comparing DiProPerm
to other two-sample HDLSS tests in a wide array of data settings. Finally, in Section 5, we
follow up on the HDLSS breast cancer microarray datasets discussed at the beginning of
the article.

2. METHODOLOGY

DiProPerm is a three-step procedure:

1. Direction—train a binary linear classifier on the class labels and find the normal
vector to the separating hyperplane.

2. Projection—project data from both samples onto this normal vector and calculate a
univariate two-sample statistic.

3. Permutation—assess the significance of this univariate statistic by a permutation
test:

(a) pool the two samples and permute the class labels
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(b) recalculate direction based on permuted class labels

(c) project data onto this direction and recalculate the univariate two-sample statistic

For a level α test, we use a one-sided test and reject the null if the original test statistic is
among the 100α% largest of the permuted statistics. Note that DiProPerm, being based on
a permutation test, is an exact procedure, that is, the procedure is guaranteed to control the
Type I error. Software for the DiProPerm procedure is available at

http://www.unc.edu/ marron/marron_software.html.
Further details on each of the DiProPerm steps is given below.

2.1 DIRECTION

The first step of DiProPerm is based on a binary linear classifier. In particular, the
normal vector to the separating hyperplane corresponding to the classifier is taken to be
the projection direction in DiProPerm. Our classifier of choice is the distance weighted
discrimination (DWD) classifier (Marron, Todd, and Ahn 2007), a powerful binary linear
classifier in high dimensions. DWD seeks to find the separating hyperplane that minimizes
the average inverse distance from data points to the separating hyperplane.

The support vector machine (SVM) is another popular binary linear classification
method, see Hastie, Tibshirani, and Friedman (2001) for a good introduction. SVM seeks
to find the separating hyperplane that maximizes the minimum distance from each data
point to the hyperplane.

Both DWD and SVM are large margin-based classification methods. They can perform
quite differently in HDLSS settings, however. Specifically, the SVM classifier suffers
from severe data piling in this setting, that is, many projections pile onto the same value.
Data piling is undesirable in the DiProPerm framework because it drastically reduces the
information in the projected values. DWD was developed in part to overcome the data
piling issue.

Figure 2 shows the projections of high-dimensional data (d = 400) onto DWD and SVM
directions. The multivariate distributions considered are the multivariate t distribution
with 2 degrees of freedom and the multivariate Gaussian distribution. We can see for
both distributions, the SVM projections exhibit data piling while the DWD projections
do not.

Neither the DWD and SVM projection directions have closed-form expressions. For this
reason, it is challenging to study theoretical properties of DiProPerm tests based on these
directions. In contrast, the centroid method is a simple but naive binary linear classifier
where points are assigned to the class whose centroid is closest (Hastie, Tibshirani, and
Friedman 2001). The normal vector to the separating hyperplane is the unit vector in the
direction of the line segment connecting the centroids of each class, (X̄ − Ȳ ).

We rarely use the centroid projection direction in practice because it is “all about the
mean” and simple settings can be concocted where it performs much worse than either
DWD or SVM. However, the centroid direction is most amenable for theoretical analysis,
a fact we take advantage of in Section 3.

http://www.unc.edu/
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Figure 2. SVM projections versus DWD directions for multivariate t(2) distribution and multivariate Gaussian
distribution, d = 400. SVM projections (bottom row) exhibit data piling issue while DWD (top row) does not.

2.2 PROJECTION AND UNIVARIATE STATISTIC

In the second step of DiProPerm, the data are projected on the trained direction in the
previous step and a univariate two-sample statistic is computed on the projected values. Let
x̃1, . . . , x̃m be the projected values in the first sample of X’s and similarly, let ỹ1, . . . , ỹn be
the projected values in the second sample of Y’s. Here is a list of possible univariate
two-sample statistics:

1. Difference of sample means (MD)

1

m

m∑
i=1

x̃i − 1

n

n∑
i=1

ỹi

2. Two-sample t-statistic (t)

t = MD√
s2
x̃ /m+ s2

ỹ /n
,

where s2
x̃ is the unbiased estimator of the variance of the projected values x̃ and

similarly for s2
ỹ .
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3. Area under the curve (AUC), the curve being the receiver operating curve. The
receiver operating curve is formed by plotting

1

m

m∑
i=1

1{x̃i ≤ c}

versus

1

n

n∑
i=1

1{ỹi ≤ c}

as c ranges over the values of the projected values in each sample. The AUC statistic
is the area under this curve.

In Section 4, we will further explore the advantages and disadvantages of each of these
statistics.

2.3 PERMUTATION

In the final step of DiProPerm, an approximate permutation test is conducted to assess
the significance of the test statistic in the previous step. The empirical p-value, or the p-value
simply, is calculated as the proportion of the statistics under permutation that exceeds the
original test statistic.

For the permutation test to be exact, some randomization may have to be introduced
particularly when both m and n are small. This is because when sample sizes are very small,
the discreteness of the permutation distribution makes only certain p-values achievable.
Randomization can be introduced if such is the case to make the test exact. For more
details, see Ernst (2004).

3. THEORETICAL PROPERTIES OF DIPROPERM IN THE
HDLSS ASYMPTOTIC REGIME

In this section, we study the limiting behavior of DiProPerm tests under the HDLSS
asymptotic regime, that is, d → ∞ for fixed n. Asymptotics in the classical setting (where
n → ∞ for fixed d) and the random matrix setting (where d, n → ∞) are important as
well. For this first article, however, we will restrict our attention to the HDLSS asymptotic
regime.

First, a few words on notation. The DiProPerm test that uses direction A and univariate
two-sample statistic B will henceforth be concatenated as A-B. For instance, the DiProPerm
test that uses the centroid projection direction and the MD statistic will be concatenated to
centroid-MD.

In the theoretical analysis, we will focus on the centroid projection direction for it has
a simple closed-form expression. As for the univariate two-sample statistic, we will see in
Section 4, the AUC statistic is favorable to the MD and t-statistics under certain settings.
However, in this section we will focus only on the MD statistic and the two-sample
t-statistic, which have simple closed-form expressions.
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Consistency of hypothesis tests in the classical asymptotic regime is, in general, a rather
trivial property, that is, most reasonable hypothesis tests will converge to 1 in power. We
will show the same is not true in the HDLSS asymptotic regime. Examples of this can also
be found in Biswas and Ghosh (2014).

Let F1 = N (μx,�x) and F2 = N (μ2, �y) be two multivariate Gaussian distributions
where the covariance matrices are spherical. Consider m draws from the former and n draws
from the latter. For the alternative of unequal means μx �= μy , it can be established that all
DiProPerm tests are consistent under certain moment and mixing conditions using Theorem
3.1 of Ghosh and Biswas (2013). This is not surprising since binary linear classifiers are
very adept at picking up signals in the mean. Furthermore, in higher dimensions, linear
classifiers often outperform complex classifiers with complicated decision boundaries. Thus
in the case of a mean effect, we expect DiProPerm to a consistent procedure.

A more interesting alternative is equal means μx = μy but unequal covariances �x �=
�y . Theorem A.2 in Appendix A shows that the DiProPerm centroid-t test is consistent (as
d → ∞) under these settings and Theorem A.1 in Appendix A shows that the DiProPerm
centroid-MD test is not consistent under these same settings. HDLSS geometric intuition
of these results are given in Appendix B.

Remark 1. The normality and spherical covariance assumptions used in Theorems A.1
and A.2 in Appendix A may be relaxed at the expense of more complicated proofs. Specif-
ically, we may relax them to the following assumptions used in Hall, Marron, and Neeman
(2005), Jung and Marron (2009), and later in Ghosh and Biswas (2013), listed briefly
here:

1. uniformly bounded fourth moments

2. ρ-mixing condition

3. d−1 ∑d
k=1 var(X(k)) → σ 2

1 , similarly for Y and d−1 ∑d
k=1{E(X(k)) − E(Y (k))}2 →

μ2.

The normality assumption can be replaced by the first two conditions above while the
spherical covariance assumption can be replaced by the third condition above.

Theorem A.1 in Appendix A also has the surprising implication that the centroid-MD
DiProPerm test, under equal sample sizes, is asymptotically valid for testing equality of
means. This is surprising because permutation tests are, in general, not valid for testing
equal means as the assumption of exchangeability of the samples may not hold under the
null hypothesis. See Huang et al. (2006) and Chung and Romano (2013) for more details
on this phenomenon.

4. COMPARISON WITH OTHER METHODS

We will compare the empirical power of DiProPerm with the RP test, the energy test,
and the Ghosh and Biswas (GB) method. The empirical power is calculated using Monte
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Carlo simulations and is calculated as the proportion of times a test rejects the null. The
tests are conducted at significant level 0.05.

We will focus on the DWD direction in DiProPerm for reasons discussed in Section 2.1.
We will consider all three univariate two-sample statistics presented in Section 2.2—the
MD, two-sample t, and AUC statistic.

In the GB method, the data in each sample are first randomly split into two subsets, call
them training and testing. A binary linear classifier is learned on the training subsets, that is,
step 1 of DiProPerm. The data in the testing subsets are projected onto the linear classifier
and a univariate two-sample statistic is calculated, that is, Step 2 of DiProPerm. Ghosh
and Biswas (2013) provided two choices for the classifier—SVM and DWD—and two
choices for the univariate two-sample statistic—the Kolmogorov–Smirnov (KS) statistic,
and the Wilcoxon–Mann–Whitney (WMW) statistic. The test function for this random split
is calculated according to the KS null distribution or the WMW null distribution. The final
test function is averaged over many different random splits. As the final test function is
usually a number strictly between 0 and 1, the test is implemented via randomization. We
will compare DiProPerm to the version of the GB method, which uses DWD and the KS
statistic, abbreviated as KS-DWD.

The extreme value test in Cai, Liu, and Xia (2014) is implemented using the test statistic
proposed for the setting of an unknown precision matrix, which is not assumed to be sparse.
The tuning parameter δ is set at the recommended value of δ = 2.

The simulation settings considered in the empirical power study are summarized below,
details of which are given later.

S1. Gaussian mixture.

S2. Normal versus T.

S3. Multivariate Gaussians with a large location shift, and small covariance difference.

S4. Multivariate Gaussians with a small location shift, and large covariance difference.

S5. Multivariate Gaussians, with a sparse location shift of log(d)/3 in the first coordinate
(as in Ghosh and Biswas 2013).

S6. Multivariate T distributions with 2 degrees of freedom, with a sparse location shift of
log(d)/3 in the first coordinate (as in Ghosh and Biswas 2013).

S7. Multivariate Cauchy distributions, with a sparse location shift of log(d)/3 in the first
coordinate (as in Ghosh and Biswas 2013).

In all simulations that follow, we generate 100 observations from each class and study the
empirical power for a range of dimensions d = 25, 50, 100, 200, 400, 800, and 1600.

In Simulation, the data in each sample arise from a two-component Gaussian mixture,
equally weighted. In the first sample, the first component has mean (3, 30, 0, . . . , 0) and
the second component has mean (3,−30, 0, . . . , 0). The covariance matrix is the identity
matrix in both components. In the second sample, we have the same setup with a dif-
ferent mean structure. The first component has mean (−3, 30, 0, . . . , 0) and the second
component has mean (−3,−30, 0, . . . , 0). Figure 3(a) displays the empirical power of var-
ious methods considered here under this setting. The DiProPerm DWD-MD test performs
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Figure 3. Non-Gaussian distributions.

excellently while the other two DiProPerm tests, DWD-t, and DWD-AUC, perform less
well but still favorably to the other methods considered. The RP test and KS-DWD test
of Ghosh and Biswas (2013) both perform quite poorly in this mixture setting. The large
signal in the second coordinate of the mean vector in this simulation is a red herring,
since the real action resides actually in the first coordinate. For this reason, tests based
on mean and covariance quantities are likely to perform poorly (e.g., Bai and Saranadasa
1996; Srivastava and Du 2008; Chen and Qin 2010) and other similar tests for detecting
high-dimensional mean effects.

In Simulation S2, the first sample arises from the standard multivariate Gaussian dis-
tribution. The second sample arises from a multivariate distribution with independent
t(5) marginals. This simulation setting was considered by Szekely and Rizzo (2004) that
also proposed the energy test that can be seen to dominate the other methods for this setting.

In Simulation S3, we consider a setting where the mean effect grows stronger
with dimension and covariance effect grows weaker with dimension. Let F1 =
N (μ1, �1) and F2 = N (μ2, �2). We set μ1 to be the zero vector and μ2 to be
zero in the first 25% of the coordinates and 1/

√
n in the rest. Let � be the co-

variance matrix with 1’s along the main diagonal and 0.2 along the two diagonals
off the main one. Let U be a d by d matrix with uniform(0, 32/d2) entries. Let
δ = |min( smallest eigenvalue of �, smallest eigenvalue of � + U )| + 0.05. We set�1 =
� + δId and �2 = � + U + δId . This type of covariance alternative was considered by
Cai, Liu, and Xia (2013). The empirical power of each method under this setting is shown in
Figure 4(a). We see that the DiProPerm MD test and energy test perform very similarly and
outperform all other methods. This is reasonable since the MD statistic is good at picking up
a strong mean effect. The same is true for the energy test that is based on pairwise distances
between points. The RP test also performs rather poorly in this setting even though the data
are Gaussian and the mean effect is felt through many directions. This may be a sign that
the RP test is very unrobust to the equal covariances assumption. The KS-DWD test also
has decent performance but is not as powerful as DiProPerm. Both methods use the DWD
projection direction, but the KS-DWD method uses only a subset of data to train DWD,
which could lead to a decrease in power.

In Simulation S4, we consider a mean effect that grows weaker with dimension and a
covariance effect that grows stronger with dimension. For this setting, we let μ1 be the
zero vector and μ2 be 1/

√
d in all coordinates. The covariance matrices are formed as in
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Figure 4. Gaussian distributions with mean and covariance alternatives.

Simulation 2 except U is a d by d matrix with uniform(0, 32) entries. The empirical power
of each method under this setting is shown in Figure 4(b). The energy test outperforms
all other methods by a large margin for low dimensions. However, all methods considered
encounter difficulty as the dimension increases. For this setting, a test tailored for testing
equal covariances may be necessary.

In Simulation S5, a setting studied in Ghosh and Biswas (2013), two standard multivariate
Gaussian differ only in a location shift of log(d)/3 in the first coordinate. Figure 5 shows the
DiProPerm MD test, the energy test, and the KS-DWD test outperform all other methods and
perform similarly to each other. The RP test performs poorly in this setting despite the fact
that all assumptions for the procedure are satisfied, that is, normality and equal covariances.
This is likely because the true signal is contained in the first coordinate direction but the
RP method tries to sense many different random directions. In this setting, the covariance
structure between the two samples is identical. The extreme value test proposed in Cai, Liu,
and Xia (2014) has better performance in this setting than the simulation settings above.
This may reflect the fact that the procedure in Cai, Liu, and Xia (2014) is for testing equality
of means and is quite sensitive to violation of the assumption that the covariance structure
is identical.

In Simulations S6 and S7, we look at multivariate distributions with heavier tails than the
multivariate Gaussian. The distributions considered are the multivariate t distribution with 2

Figure 5. Simulation S5, multivariate Gaussian.
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Figure 6. Heavy-tail distributions with sparse location shift.

degrees of freedom and the multivariate Cauchy distribution. For both, we consider location
shifts of log(d)/3 in the first coordinate. The multivariate t and Cauchy distributions are
generated with the correlation matrix set to the identity matrix; note that this does not imply
independence.

Figure 6(a) and 6(b) shows the DiProPerm AUC outperforms all other methods for the
two heavy-tailed distributions considered. The RP test performs decently for low dimen-
sions. This is impressive since the RP procedure assumes normality and the data here are
far from normal. However, the RP test seems to suffer a great loss in power as soon as
sample size exceeds dimension. We also see that the energy test may have performed poorly
because it is based on pairwise distances and thus is not robust to the heavy-tailedness of
the multivariate distributions. The KS-DWD test performed well by maybe less powerful
than DiProPerm because only part of the data is used to train DWD. The extreme value test
by Cai, Liu, and Xia (2014) performs poorly in Simulations S6 and S7, which may reflect
that the test is not robust to departures from Gaussianity or sub-Gaussianity.

5. DATA EXAMPLE

In this section, we revisit the analysis of the two HDLSS breast cancer microarray
datasets introduced at the beginning of the article. The first dataset is denoted as UNCGEO
and the second as UNCUP, following the naming convention of their source which can be
found at http://peroulab.med.unc.edu/.

The UNCGEO dataset consists of the gene expression values of 9674 genes measured
on 50 breast cancer patients at UNC. The UNCUP dataset looks at the same set of genes
measured on 80 breast cancer patients in another study at UNC.

The UNCGEO patients are divided into two breast cancer subtypes: (i) Luminal A, and
(ii) Luminal B. The UNCUP patients are divided into the groups: (i) Luminals (Luminal
A and Luminal B), and (ii) HER and Basal. DiProPerm DWD-t is used to test for equal
distributions of the gene expression between the groups in each dataset.

Recall Figure 1 that shows the data projected onto DWD directions for each dataset. The
UNCGEO projections do not overlap at all whereas the UNCUP projections have a small
amount of overlap. These projection plots suggest that the separation is better for Luminal
A versus Luminal B in the UNCGEO dataset than for Luminals versus HER and Basal in
the UNCUP dataset.

http://peroulab.med.unc.edu/
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Figure 7. The DiProPerm t test result for each dataset is displayed. In the UNCGEO study, the difference
between the Luminal A and Luminal B subgroups is not significant. In the UNCUP study, the difference between
the Luminals and HER & Basal subgroups is very significant. This is surprising because the projection plots in
Figure 1 suggest the contrary.

Figure 7 displays the DiProPerm test results. Each dot represents the test statistic result-
ing from a single permutation in the permutation test. The black curve is the kernel density
estimate of the permutation statistics. The position of the original t-statistic is marked by
a vertical dashed line. The empirical p-values show that the difference in the UNCGEO
dataset is not significant while the difference in the UNCUP dataset is very significant. Note
that we are not trying to directly compare the results of the two tests as they test different
hypotheses.

This example illustrates that what may seem to be a visually striking separation in lower
dimensional visualizations could well be an artifact of over-fitting or sampling variation.

Figure 8. Plane generated by Y1, Y2, and X̄ where X1, X2 ∼ F1 = N (0, Id ) and Y1, Y2 ∼ F2 = N (0, σ 2Id ) for
σ 2 �= 1. Note that the projections of Y1 and Y2 onto X̄ − Ȳ is close to the projection of Ȳ onto X̄ − Ȳ . This has
the implication that s2

Ỹ
will be small.
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Figure 9. Plane generated by a particular permutation realization ofX1, X2, Y1, and Y2. Note that the projections
of Y ∗

1 and Y ∗
2 onto X̄∗ − Ȳ ∗ is not close to the projection of Ȳ ∗ onto X̄∗ − Ȳ ∗. This has the implication that

s2
Ỹ ∗ may be large.

Importantly, the hypothesis test results also agree with the biology. In particular, it is well
known that Luminals have a very different gene expression signature from HER and Basal.
On the other hand, the difference between Luminal A and Luminal B is less clear cut (Carey
et al. 2006).

6. SUMMARY

In this article, we introduced DiProPerm, a hypothesis testing framework for testing
equality of two multivariate distributions. DiProPerm hypothesis tests are nonparametric
and exact. Furthermore, DiProPerm also ties in nicely with high-dimensional data visual-
ization. In practice, we recommend using the DWD direction in DiProPerm. If one wishes
to test for equality of means, the mean difference univariate statistic should be used. On the
other hand, if testing the more general equality of distributions, the two-sample t-statistic
and the AUC statistic both perform well.

APPENDIX A: HDLSS ASYMPTOTICS

In this section, we study the HDLSS asymptotic behavior of the centroid-MD and the centroid-t
tests. We show the centroid-t is consistent but the centroid-MD is inconsistent under the alternative
of equal means and unequal covariances.

Let Z be the pooled sample of X’s and Y’s. The centroid-MD test statistic, to be denoted by
Tm,n(Z), is the mean of the projections of the X’s onto the unit vector in the direction of X̄ − Ȳ minus
the mean of the projections of the Y’s onto the unit vector in the direction of X̄ − Ȳ :

Tm,n(Z) = Tm,n(X1, . . . , Xm, Y1, . . . , Yn) (A.1)

= 1

m

m∑
i=1

X′
i

(X̄ − Ȳ )

||X̄ − Ȳ || − 1

n

n∑
j=1

Y ′
j

(X̄ − Ȳ )

||X̄ − Ȳ || (A.2)

= ||X̄ − Ȳ ||. (A.3)
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Theorem A.1. Let X1, . . . , Xm be an iid sample from the d-variate Gaussian distribution
N (μX,�x) and Y1, . . . , Yn be an independent sample drawn iid from the d-variate Gaussian distribu-
tion N (μY ,�y), where �X �= �Y . If m = n, then the unconditional distribution and the permutation
distribution of Tm,n(Z) are equal under the null μX = μY .

Proof. Under μX = μY , X̄ − Ȳ is distributed as

N (0, �x/m+�y/n) (A.4)

and the permutation distribution of X̄ − Ȳ is

m∑
r=0

(
m

r

)(
n

r

)
(
m+n
m

) N (0,
(m− r)�x + r�y

m2
+ r�x + (n− r)�y

n2

)
. (A.5)

If m = n, the expressions in (A.4) and (A.5) are the same, in which case the unconditional and
permutation distribution of Tm,n(Z) are also the same.

�

Notice the result in Theorem A.1 is based on finite samples. If the two samples are not independent,
for instance, we would have to appeal to asymptotics to derive an approximation of (A.5).

The centroid-t-statistic, to be denoted by Um,n(Z), is the result of applying the unbalanced sample
sizes, unequal variance two-sample t-test statistic (also known as Welch’s t-test, Welch 1947) to the
projections onto the centroid direction. Let a · b denote the standard dot product between two vectors
in Rd . The sample variances of the projected data can be expressed as

s2
X̃

= 1

m− 1

m∑
i=1

[(Xi − X̄) · (X̄ − Ȳ )]2

and

s2
Ỹ

= 1

n− 1

n∑
i=1

[(Yi − Ȳ ) · (X̄ − Ȳ )]2.

Define Sm,n(Z) = Sm,n(X1, . . . , Xm, Y1, . . . , Yn) = s2
X̃
/m+ s2

Ỹ
/n. The centroid-t-statistic is

Um,n(Z) = Tm,n(Z)/{Sm,n(Z)}1/2,

where Tm,n(Z) is as defined above. We use the term “projected” rather loosely here since we have not
normalized by ||X̄ − Ȳ ||. This is of no actual consequence since the two-sample t-statistic is scale
invariant.

Theorem A.1 establishes the numerator of the centroid-t-statistic behaves the same in the permuta-
tion and unconditional world. The same is not true for the denominator of the centroid-t-statistic. The
next result gives us a sense of just how far apart are the permutation and unconditional distributions
of the denominator Sm,n(Z).

Theorem A.2. Let X1, . . . , Xm be a sample from the d-variate Gaussian distribution
N (μx, σ 2

x Id ) and Y1, . . . , Yn be an independent sample from the d-variate Gaussian distribution
N (μy, σ 2

y Id ), where σ 2
x �= σ 2

y are scalars. Under μx = μy , we have

1

d
Sm,n(Z)

d−→
(
σ 2
x

m
+ σ 2

y

n

){
1

m− 1

σ 2
x

m
χ 2(m− 1) + 1

n− 1

σ 2
y

n
χ 2(n− 1)

}
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as d goes to infinity. For the permuted version, we have for some nonzero constant c,

1

d2
Sm,n(Zπ ) → c in probability.

The results of this theorem are surprising in that the denominator of the centroid-t-statistic
is actually of different orders in the unconditional and permutation worlds. In particular, in the
unconditional world Sm,n(Z) grows like a random variable times d, while in the permutation world it
grows like a constant times d2.

To prove Theorem A.2, a few lemmas are needed.

Lemma A.1. LetX1, . . . , Xm be a sample from the d-variate Gaussian distributionN (μx, σ 2
x Id ) and

Y1, . . . , Yn be an independent sample from the d-variate Gaussian distribution N (μy, σ 2
y Id ), where

σ 2
x �= σ 2

y . Let X̃k = X′
k(X̄ − Ȳ ). Let X̃1:k−1 be the sample mean of X̃1, . . . X̃k−1. Under μx = μy , we

have, for k = 2, . . . , m

d−1/2((X̃k − X̃1:k−1)){
k

k−1σ
2
x (σ 2

x /m+ σ 2
y /n)

}1/2

d−→ N (0, 1) as d → ∞.

Similarly we have

d−1/2((Ỹk − Ỹ1:k−1)){
k

k−1σ
2
y (σ 2

x /m+ σ 2
y /n)

}1/2

d−→ N (0, 1) as d → ∞

k = 2, . . . , n.

Proof. We can write X̃k − X̃1:k−1 as a sum of products

X̃k − X̃1:k−1 =
d∑
p=1

(Xk − X̄1:k−1)(p)(X̄ − Ȳ )(p), (A.6)

where X(p) simply refers to the pth component in the d-dimensional vector X. The expectation of the
summands in (A.6) is zero:

E(Xk − X̄1:k−1)(p)(X̄ − Ȳ )(p) = E(X(p)
k X̄

(p)) − E(X̄(p)
1:k−1X̄

(p))

−E(X(p)
k Ȳ

(p)) + E(X̄(p)
1:k−1Ȳ

(p))

= 0.

Next we look at the variance of the summands. Recall for Gaussian data, zero covariance is
equivalent to independence. We know the covariance between (Xk − X̄1:k−1)(p) and (X̄ − Ȳ )(p) is
zero since the expectation of the latter is zero and the expectation of the product was shown above
to be zero as well. Thus, each summand in (A.6) is the product of two independent variables. The
variance of a product of independent variables, U and V , is

(EU )2var(V ) + (EV )2var(U ) + var(U )var(V ). (A.7)

Thus, we have

var(Xk − X̄1:k−1)(p)(X̄ − Ȳ )(p) = var(Xk − X̄1:k−1)(p)var(X̄ − Ȳ )(p)
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= k

k − 1
σ 2
x (σ 2

x /m+ σ 2
y /n).

By the central limit theorem, we have

d1/2
(

1
d

(X̃k − X̃1:k−1)
)

{
k

k−1σ
2
x (σ 2

x /m+ σ 2
y /n)

}1/2

d−→ N (0, 1) as d → ∞

�

Lemma A.2. LetX1, . . . , Xm be a sample from the d-variate Gaussian distributionN (μx, σ 2
x Id ) and

Y1, . . . , Yn be an independent sample from the d-variate Gaussian distribution N (μy, σ 2
y Id ), where

σ 2
x �= σ 2

y . Let π be a permutation of {1, . . . , N = m+ n}. Let Z̄π = (Z̄π (1:m) − Z̄π (m+1:N)) be the
centroid direction trained on the permuted labels determined by π . We have for i = 1, . . . , m,

E((Zπ (i) − Zπ (1:m))
(k)Z̄(k)

π )

is nonzero. Similarly, for i = m+ 1, . . . , N , we have

E((Zπ (i) − Zπ (m+1:N))
(k)Z̄(k)

π )

is nonzero.

Proof. We prove the first statement. The second can be shown in a similar fashion. Let P (n, k) denote
the number of k permutations of n, that is,

P (n, k) = n · (n− 1) · (n− 2) · · · (n− k + 1).

We have for i = 1, . . . , m and k = 1, . . . , d,

E((Zπ (i) − Zπ (1:m))
(k)Z̄(k)

π ) = E((Zπ (i) − Z̄π (1:m))
(k)(Z̄π (1:m) − Z̄π (m+1:N))

(k))

= EZ (k)
π (i)Z̄

(k)
π (1:m) − EZ (k)

π (i)Z̄
(k)
π (m+1:N) − E(Z̄(k)

π (1:m))
2

+EZ̄(k)
π (1:m)Z̄

(k)
π (m+1:N)

= (EZ (k)
π (i))

2

m
+ m

m− 1
μ2 − μ2 − E(Z̄(k)

π (1:m))
2 + μ2

= var(Z(k)
π (i)) + μ2

m
+ m

m− 1
μ2 − (var(Z̄(k)

π (1:m)) + μ2)

= var(Z(k)
π (i))

m
− var(Z̄(k)

π (1:m))

= m

N

{
σ 2
x

m
− 1

m2

1

w1

m−1∑
r=0

P (m− 1, r)P (n,m− r)

×[rσ 2
x + (m− r)σ 2

y ]

}

+ n

N

{
σ 2
y

m
− 1

m2

1

w2

n−1∑
r=0

P (n− 1, r)P (m,m− r)

×[rσ 2
y + (m− r)σ 2

x ]

}
,
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where w1 and w2 are the weights

w1 :=
m−1∑
r=0

P (m− 1, r)P (n,m− r) and w2 :=
n−1∑
r=0

P (n− 1, r)P (m,m− r).

Thus if σ 2
x �= σ 2

y , we have E((Zπ (i) − Zπ (1:m))(k)Z̄(k)
π ) is nonzero.

�

Lemma A.3. Let Z1, Z2 be two random variables in Rd such that Z(k)
1 Z

(k)
2 are iid for k =

1, . . . , d and E(Z(k)
1 Z

(k)
2 ) exists and is finite. Then

1

d2
(Z1 · Z2)2 → [E(Z(k)

1 Z
(k)
2 )]2 in probability.

Proof. By the law of large numbers, we have

1

d
(Z1 · Z2) → E(Z(k)

1 Z
(k)
2 ) in probability.

By continuous mapping theorem, we have

1

d2
(Z1 · Z2)2 → [E(Z(k)

1 Z
(k)
2 )]2 in probability.

�

Proof of Theorem A.2. To prove the first part of Theorem A.2, we decompose s2
X̃

and s2
Ỹ

each into a

sum of independent variables. Let X̃k−1 be the sample mean of the first k − 1 projections X̃1, . . . X̃k−1.
We will write s2

X̃
in a recursive fashion. Define s2

1 = 0. We will use the following recursive formula
to define s2

k for k = 2, . . . , m

(k − 1)s2
k = (k − 2)s2

k−1 + k − 1

k
(X̃k − X̃k−1)2. (A.8)

Since s2
k−1 is independent of (X̃k − X̃k−1)2, this recursive viewpoint allows us to decompose s2

X̃
=

s2
m into a sum of independent terms. Using the result in Lemma A.1 and the second-order Delta

method, we have

1
d

(X̃k − X̃1:k−1)2

k

k−1σ
2
x (σ 2

x /m+ σ 2
y /n)

d−→ χ 2(1) as d → ∞. (A.9)

Inputting expression (A.9) into the recursion defined in (A.8) and exploiting the independence of the
individual terms in s2

X̃
, we get

1

d
s2
X̃

d−→ 1

m− 1
σ 2
x

(
σ 2
x

m
+ σ 2

y

n

)
χ 2(m− 1) as d → ∞

Similarly, we can show for the sample of projections Ỹ1, . . . , Ỹn,

1

d
s2
Ỹ

d−→ 1

n− 1
σ 2
y

(
σ 2
x

m
+ σ 2

y

n

)
χ 2(n− 1) as d → ∞

Thus, we have

1

d
Sm,n(Z) = 1

d

(
s2
X̃

m
+ s2

Ỹ

n

)
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d−→ 1

m− 1

σ 2
x

m

(
σ 2
x

m
+ σ 2

y

n

)
χ 2(m− 1) + 1

n− 1

σ 2
y

n

(
σ 2
x

m
+ σ 2

y

n

)
χ 2(n− 1)

For the second part in Theorem A.2, we expand the sample variance of the projected values in the
permuted group as follows:

s2
Z̃π(1:m)

= 1

m− 1

m∑
i=1

(
Z̃π (i) − Z̃π (1:m)

)2

= 1

m− 1

m∑
i=1

(
(Zπ (i) − Zπ (1:m)) · (Z̄π (1:m) − Z̄π (m+1:N)

))2
.

Lemma A.2 shows E(Zπ (i) − Z̄π (1:m))(k)(Z̄π (1:m) − Z̄π (m+1:N))(k) is nonzero. Now apply Lemma A.3
with Z1 = (Zπ (i) − Zπ (1:m)) and Z2 = (Z̄π (1:m) − Z̄π (m+1:N)) to see that 1

d2 s
2
Z̃π(1:m)

converges in proba-

bility to a nonzero constant. A similar argument can be applied to s2
Z̃π(m+1:N)

. Combining these results,

it immediately follows that 1
d2 Sm,n(Zπ ) converges in probability to a nonzero constant.

APPENDIX B: HDLSS GEOMETRY

In this section, we give some geometric intuition as to why the centroid-t-statistic behaves so
differently in the permutation and the original world under equal means. Recall that under equal
means the numerator in the centroid-t-statistic behaves similarly in the permutation world and the
original world. Theorem A.2, however, shows that the denominator of the centroid-t is larger in the
permuted world. This has the effect of making the unconditional distribution of the centroid-t-statistic
larger than the permutation distribution.

To gain some intuition, consider the following toy HDLSS example. Suppose we observe
X1, X2 ∼ F1 and Y1, Y2 ∼ F2 where F1 = N (0, Id ) and F2 = N (0, σ 2Id ), σ 2 �= 1. The points
X1, X2, Y1, Y2 form the vertices of a tetrahedron in three-dimensional space. The two-dimensional
plane generated by Y1, Y2, and X̄ is shown in Figure 8.

Distances between elements of interest are calculated using HDLSS asymptotics in the manner
of Hall, Marron, and Neeman (2005), which we briefly review here. Let X ∼ N (0, σ 2

x Id ) and Y ∼
N (0, σ 2

y Id ). We have simply by definition

||X − Y ||2/(σ 2
x + σ 2

y ) ∼ χ 2(d).

Then by the central limit theorem,

√
d

(
||X − Y ||2/(σ 2

x + σ 2
y )√

2d
− 1√

2

)
→ N (0, 1)

as d → ∞. Applying the Delta Method, we get

√
d

⎛
⎝ ||X − Y ||

21/4
√

(σ 2
x + σ 2

y )d
− 1

21/4

⎞
⎠ = OP (1)

and thus

||X − Y || =
√

(σ 2
x + σ 2

y )d +OP (1).
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In the diagrams, all distances have an additional OP (1) term that is not shown to avoid clutter.
The geometric configuration in Figure 8 has the implication that s2

Ỹ
is small. To see this, note the

projections of Y1 and Y2 onto the centroid direction X̄ − Ȳ is close to the projection of Ȳ itself. A
similar argument can be applied to show s2

X̃
is small.

Now let us look at what happens in the permutation world. Figure 9 shows the two-dimensional
plane generated by the realization of a random permutation where X∗

1 = X2, X∗
2 = Y2 and Y ∗

1 =
X1 and Y ∗

2 = Y1. Notice that the distance between Y ∗
1 and X̄∗ is different than the distance between

Y ∗
2 and X̄∗. This has the effect of making s2

Ỹ ∗ , the sample variance of the projections of Y ∗
1 and Y ∗

2 ,
large. To see this, note the projections of Y ∗

1 and Y ∗
2 onto the permuted centroid direction are not close

to the projection of Ȳ ∗. A similar argument can be applied to show s2
X̃∗ , the sample variance of the

projections of X∗
1 and X∗

2 , is large.
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